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Abstract

We discuss work in progress on two expert systems.
We are developing systems that use artificial intelligence
techniques to simplify the use of large simulation codes
and to help design complicated physical devices. The
simulation codes are used in analyzing and designing
weapons, and the devices are themselves parts of weapon
systems. But we focus not only on the particular applica-
tions, bu* also on the broader issues common to design
problerns: large solution spaces and tentative reasoning.
We also discuss some practical difficulties encountered
during the project. One expert system provides an inter-
face between users and several simulation codes. It
checks input for errors, builds input files for the codes,
and submits jobs to a central computing facility. The
other expert system helps turn a description of a device
inte a particular design. Currently this expert system
includes thrce major parts: a translator of descriptions
into designs, a graphics interface that presents the design
to the user and allows him to manipulate it, and a refiner
of designs. The latter is the "smartest” part of the sys-
tem, and the target of much of our present efforts.

Introduction

The major task of the Los Alamos National Labora-
tory is the design of nuclear weapons. This design pro-
cess requires the use of large FOR'TRAN simulation codes
that run on the fustest supercomputers available. To a



large extent, design is an art that consumes grest time of
both people and computers. Therefore we are construct-
ing two expert systems to simplify the use of the simuls-
tion codes and to assist in the design of weapons. Both
systems described here are works in progress. This paper
should be viewed as an interim report.

Out of synch with their documentation, needing
input in particular forms that are hard to remember,
crashing for no discernible reason, big codes are often
hard to use. But they are necessary: they exploit the
capabilities of computers to do calculations that are oth-
erwise impossible, and so increase our urderstanding and
guide our intuition about complicated phenomena. How-
ever. using computers raises problems. We must assimi-
late information we already have, choose what to com-
pute, describe the computation to the machine, interprct
the machine’s results, and combine the new information
with what we already know. Fig. 1 shows the environ-
ment in which users now run simuiation codes at Los
Alamos. In these circumstances, the user bears the bur-
den of understanding not only the relevant physics, say,
of his problem, but alsc the inner details of the simula-
tion code and the computing system. Both expert sys-
tems that we describe here address a common long-range
goal: making the computer a morc adaptable, expressive,
amiable tool. Fig. 2 indicates the environment we aim
for. Here inner details of simulation codes are handled by
the controller expert system, while the apprentice expert
systemn helps the user express a simulation in terms
nacaral to him rather than to the underlying computa-
tional device. The apprentice also helps refine the design,
sct up a simulation, and interpret results.

Procon

Procon is an expert system that provides an interface
between users and several simulation codes; it helps the
designer set up and submit "production” calculations.
We run simulation codes interactively when the problem
it small enough. But large problems -- including most
designs -- require several houts of Cray time, and =« are
run in "production” mode. A production controller is a
control program containing both input parameters for a



simulation code and procedures to be followed by the
production supervisor program to complete the computa-
tion or to preserve it should unforeseen difficulties arise.
Currently designers rely on three such production con-
trollers, each maintained by a different person. Procon
will replace these coatrollers, thus providing a uniform
user interface to the three codes and simpliifying mainte-
nance.

The expertise of Procon lies in its knowledge of what
inputs are required for the weapons codes, what ranges
and forms those parameters have, and what procedures
are followed by the production supervisor. This informa-
tion is gathered in databases that are manipulated by
simple general control routines, a schema followed by
many well-known expert systems.

Procon works in three major phases:

(1) Interface: it creates an environment for interaction
with the user.

(2) Checker: it helps the user build input that describes
the simulation to the weapons code.

(3) Generator: it constructs a job control stream and
submits it for production.

The environment for the interaction includes such
factors as the user’'s name, accounting information, last
progrim used, and last data file used. More important
are ‘ynemic aspects, such as the disposition of cutput
and a choice of actions the system should take if soine-
thing goes awry. With this information, Procon allows a
user who is working on an extensive design problem to
contiave his efforts without concern for these details, or
to start work by perturbing his latest run. Procon heips
describe the simulation by checking the form and range
of input data for the simulation code. Such early detec-
tion of errors prevents the simulation code from crashing
in a production run. Finally, generation of a job control
stream and submittai are algorithmic tasks that ordinary
controllers perform. Many of the same concepts carry
over to Procon.

For users, Procon has two advantages over standard
controllers: it provides a common interface to scveral



simulation codes, and it detects input errors in parameter
names, values, subscripts, and formats. Of equal impor-
tance to us is an improvement that is unseen by users.
The Procon program uses a variety of information about
the inputs and expected behaviors of the simulation
codes. These data are stored in database-like files
separate irom the executable program itself. In principle,
then, we could add more target codes to Procon simply
by extending the database, rather than by revising
Procon's executable code. We have done this. Procon
originally controlled a single simulation cod.. Exploiting
the data-driven implementation of the checker, we added
a second target code by augmenting the database, and
are adding others.

Just as the checker 1s implemented with data-driven
programming, so should the generator be. For instance,
different simulation codes expect data in different for-
mats. Moreover, big simulation codes last muck louger
than big computers. During the life of the codes details
of production control procedures will change several
times. A generator written with data-driven techniques
need not be rewritten to track these changes. Although
Procon’s generator i3 not yet data-driven, we expect to
make it so.

Friendly users received the first version of Procon on
a Vax in July. Duriug the next year we plan to make
Procon operate in the production environment, to have
Cray-Vax communication, to add a third weapons code,
and to enhance Procon's crror-checking abilities. Now
single parameters are checked for errors; we are exploring
ways to detect and correct more subtle errors, such as
inconsistencies between parumeters or violation of con-
straints imposed by the context or erder of paramcters.

Difficulties

Obviously, security censtraints limit our choices of
software, hardware, and ways tc connect them.
iconomic factors also bind: giving $100,000 Al machines
to every designer s not a practical possibility. Most of
our users work on Cray computers. But there is no Lisp
environment oa the Crays to support Al development.
For developing our systems we chose a Vax 780 running



EUNICE under VMS to emulate UNIX. We began with
Gordon Novak's GLisp, exploiting its object-oriented pro-
gramming festures for database management. Because
our Computing Division was putting Portat's Standard
Lisp (PSL) on the Cray, we also favored GLisp for its
compatibility with PSL. But the PSL Flavors is ronsider-
ably more primitive than the MIT Lisp Machine version
available with Franz Lisp. We actually made s PSL ver-
sion of Procon for the Cray. However, this program has
not run because Cray PSL was not then a full implemen-
tation. Now we use Franz Lisp with the MIT macro
enhancements.

One major difficulty is that EUNICE does not sup-
port complete input-output functions of UNIX. This dis-
rupts the behavior of window systems, such as the
University of Maryland window system, that we had
planned to use. Lack of 3 window facility severely res-
tricts the convenience of user interaction.

Another difficulty arises because our intended audi-
ence works on Crays and our system runs on a Vax.
Decsigners are conservative. They prefer tools thay ‘hey
know work to tools that might be better but also might
fail. That a Vax may have a richer and mcre supportive
software environment than a Cray doesn't outweigh the
inconvenience of learning a new operating system. They
don't want to learn new operating systems; reasonably,
they prefer to learn new physics. Consequently we need
to provide access to Procon that doesn't make desiguers
fecl like they are in alien territory. Until Procon runs on
the Crays, access means that the designer on a Cray can
invoke Procon on a Vax without realizing that Procon
isn't on the same machine where he is. This requires reli-
able and fast network communications. At present,
(C'ray-Vax communication through the Integrated Com-
puter Network at Los Alamos is not fast or dependable
enough for this application to suit the designers.

The designer's apprentice

Our sccond expert system, a sort of designer's
apprentice, helps turn a description of a weapon intc a
particular design.  Che apprentice is a direct attack on
the problem of integrating numeric calculaiion with



symbolic computation. Our goal is to permit the designer
to describe & design in terms natural to him. The
apprentice should convert the description into a design,
help him refine the design, recali related design problems,
invoke standard simulation codes, and assist with param-
eter studies and interpretation of results. More precisely,
the apprentice is to meet the following goals.

(1) It will propose a design to meet a requirement based
on functioual need. The requirement may Le incom-
pletely specificd and may impose implicit constraints
that the de<igner may not care to specify. The
apprentice niay propose a design by recalling a previ-
ous design, perturbing a prior design, or developing a
new design based on heuristics and simple calcula-
tions.

(2) The apprentice will allow users to communicate with
sophisticated simulation codes using language
appropriate to the design discipline, rather than the
syntax of a specific simulation code.

(3) It will provide a consistent interface to several sima-
lation codes.

(1) The apprentice will embody a corporate memory
both for designs and for design techniques. We
believe that the corporate memory is necessary if the
apprentice is to learn how to design better or if it is
to help teach novice designers.

(5) Tt will help interpret the results of large-scale simula-
tions. This includes both winnowing for the desired
output and interpreting the output nf one code for
constructing input to another.

We are writing code that implements these objec-
tives. Here we discuss the schema upon which this cod-
ing is based.

The apprentice is a software system rather than an
isolated Al code; therefore it has utility features to make
the job easier for the designer, as well as Al sections that
attempt to capture expertise. Fig. 3 illustrates schemati-
cally the essential parts of the apprentice.

Input for the design is handled by a menu-like win-
dow that allows the designer to impose whatever



constraints he wants in whatever order he wants. When
he indicates that he is finished, the program proposes s
design based on designs that are known to work from
testing or from model calculations, including heuristics,
that cen be done without the usz of the powerful numeri-
cal simulators. (However, many of the heuristics are
derived from considerable experience with the large simu-
lators.) The space of possible designs is big. Because
several design choices may be likely at a given stage,
heuristics play an important role in choosing an alterna-
tive.

An early requirement was that the interaction with
the designer be graphical, like CAD/CAM techniques.
The apprentice presents its design to the user as a screen
picture. The drawing is dynamic: the designer can point
to a section and obtain information about it such as size,
material, mass, and material properties via a pop-up win-
dow. Through the grapbic interaction, he can add a new
section to the design and add or change specific data.
We use object-oriented programming for this. Material
sections are objects whose attributes are parameters like
those described above.

P.rhaps the most challenging problem offered by the
apprentice is the combination of inference with numerical
simulation. The chief inferences we wish to make are
that all constraints of the design are met or that no
design that meets all constraints is possible. A trivial
example of the latter is that a design that uses no nuclear
materials cannot produce nuclear yield. Several con-
straints on the design are dictated by external considera-
tions: the potential use, the space and mass available
from the delivery vehicle, and the current availability of
special materials. In addition, physical properties of
materials and general policy concerning nuclear weapons
impose other limits. The task of tlie designer is to create
a device meeting all these criteria.

That heuristics play a role in satisfying constraints
we have already mentioned. Y.t heuristics are not
enough. Because the constraints may be encountered in
different phases of the design process, violation of a con-
straint may not be discovered until late in the process.
The expert system must be able to recover from the



discovery of the violation. It does this by backtracking
[1]. In backtracking, once a violation is noted at any
level of the design, the syatem withdraws its most recent
choice and selects another alternative. If there are no
ulexplored alternatives at this level, then it goes further
back until an untried choice is found.

A rulebased expert systein does this backtracking.
A typical rule might be

IF the mass of the fissile material is too large
THEN the fissile mass has been reducead
DO execute the mass reduction rule se!

Such a rule asserts that the procedure to reduce the mass
has been carried out. This "fact” cap be used to trigger
other rules in the process, for example, to inform the sys-
tem that a procedure option (here, reduction of the mass)
nas already been tried and other options should be
chosen. In this way the form of the rule permits back-
tracking.

In practice such chronological backtracking, which
changes the most recently tried choice, may expend a lot
of effort altering irrelevant choices. Dependency-directed
backtracking withdraws the choices that matter; this is
far more efficient. Rules of the form above establish the
dependencies needed for directed backtracking.

Beyond its role in backtracking, this form of rule
serves a second purpose. The DO part of the rule allows
change of the parameters in a way that depends on the
particular violation and that isolates specific calculations
from the main centrol sequence. Because the DO can
execute any Lisp function, some rules will have directly
performed calculations by the time their conditions have
been met. Others may run additional rule sets or
scparate “subexperts,” as the example illustrates. Facts
may be asserted to control the path of execution by the
main expert system. This communication between expert
systems is like the blackboard scheme of HEARSAY-II
[2 By cnmbining heuristics to guide choice with
cooperating expert systems to solve subproblems and
backtracking to resolve conflicts, we expect to cope with
the issues of large solution spaces and tentative reasoning
characteristic of design.
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Finally, the apprentice must generate data to drive a
numerical simulation. This is done using data-driven
techniques similar to those described above for Procon.
One important difference is tha. the apprentice must
translate from the objects that form the design to the
input parameters of the simulation code.

We are still coding the apprentice. We have inter-
viewed our domain experts, prepared specifications for
the code, and developed dataflow diagrams. We have
fourd a close correspondence between “knowledge
engineering” and well-known (but not widely enough used
in this area) techniques of structured analysis and design.
These techniques of software engineering [3, 4] have
proved widely useful for building more traditional com-
puter systems. In our work on the apprentice, we have
been struck by their aptness not only for code develop-
ment but elso for guiding us in acquiring and codifying
the knowledge of the domain experts.
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Fig. 1. A standard simulation process.
The designer is in the loop, modifying setups.
He must know internal details of the simulation codes.
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Fig. 3. The apprentice interacts with a designer.

It helps seiect a design, refine it, run the simulation, and interpret results.
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EXPERT SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives

Procon to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Summary



CAN Al TECHNOLOGY HELP?

Do our present work better
- interpret between human expression and machine
instruction
- enhance symbol-manipulation ability and blend
with number-crunching

Do what is now impossible



STANDARD SIMULATION PUTS THE USER
IN THE LOOP

He must know internal details of the simulation codes

USER
A | RUN SIMULATION
CONTROLLER FILE CODE
NEW
ENVIRONMENT DESIGN

SE.'Up SETUP



BIG SIMULATION CODES ARE
HARD TO UNDERSTAND

Simulation codes have

- 100,000-200,000 lines of code

- 500-2500 variables accessible to the user

- special capabilities for special eircumstances
Documentation is usually inadequate
The code and its system environment keep changing
Users must communicate in the language of the code,

not the language of the problem



SMART INTERFACES COPE WITH

INTERNAL DETAILS

They can also help
- select alternative designs
- track choices
- interpret results
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Al TECHNIQUES CAN HELP CONTROL
SIMULATION CODES AND ASSIST IN DESIGN

Capture expertise
- reas ‘ning aspects of design process
- kno. ledge of the internals of the sirnulation
codes
- interpretation of results
Combine numeric and symbolic computation
Improve interfaces



WE ARE WORKING ON TOOLS TO HELP
CONTROL BIG CODES AND SIMPLIFY DESIGN

Procon: help set up and submit production jobs
Apprentice: help design simple nuclcar weapons



EXT'ERT SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives

Procon to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Summary



PROCON SHOULD MAKE
THE DESIGNER'’S JOB EASIER

Help set up and submit "production” jobs
Stop jobs from aborting because of input errors
Be a uniform front end to many simulation codes



CONTROLLERS MONITOR AND MODIFY
THE COURSE OF A PRODUCTION RUN

Production runs of a simulation can be expensive
- 2-100 hour runs, 5-50 files, 8-400 Mbytes
We rely on 3 expert programs as controllers
3 FTEs maintain the controllers
Changes to production codes or the operating
environment require major modifications of the
controllers



EXPERT PROGRAMS

- exhibit expert problem-solving behavior

- intertwine domain-specific knowledge with the code
- are hard to modify or use for a new problem

- are presently used to control simulation codes



EXPERT SYSTEMS

- exhibit expert problem-solving behavior

- comprise a base of information about a particular
problem domain, together with an inference
mechanism

- store domain knowledge (typically as rules) in a
database separate from the executable code

- can easily be modified and extended, by altering the
knowledge base

- become more expert in an incremental way



USE Al TECHNIQUES TO SOLVE THE PROBLEMS
OF CONTROLLER EXPERT PROGRAMS

- build an expert system to control production runs

- control decisions and heuristics appear explicitly in
a database

- easy, incremental extensions and modifications to
the controller are possible

- one controller can provide a common user interface



WE BUILT A CONTROLLER SYSTEM
THAT WORKS

Standard development cycle
- studied controllers used by designers
- picked a controller used by two design groups
- designed and implemented a first version on
Vax/VMS
Procon has three main parts
- interface: creates an environment for the user
- checker: does some error checks, helps user build
input describing the simulation
- generator: constructs job control stream and sub-
mits it for production
Cray version exists



PROCON HAS ADVANTAGES OVER STANDARD
CONTROLLERS

Provides a common interface to several simulation
codes
- fronts 2 simulation codes without rewriting exe-
cutable code
- adding a third design code
- detects input errors in parameter names, values,
subscripts, formats
Uses schema of isolating data from control
- easy to add new target codes, adapt to different
environments



PROCON WILL BECOME MORE CAPABLE

Generator improvements
- fully data-driven; adapt to different production
environ ments
Checker improvements
- check relations between input parameters
- check order of input
Database improvements
- full description of target codes
- provide aliasing of variables
Tutoring
- suggest to the user which simulation codes or
which options to use

Aim at a uniform front end for design codes



EXPER'T SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives

Procon to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Summary



LIFE IS NOT A BED OF ROSES

Security contraints limit hardware, software, connec-
tions
Hardware is hard
- Al machines are expensive, single-user, with
inadequate graphics or number-crunching power
- designers live on the Crays that run simulations
- high-resolution graphies on Tektronix 41xx
- high-specd communications between Crays,
Vaxen, workstations
Software is also hard
- some Unix tools, nc VMS tools when we started
- Eunice is inadequate
- many Lisps: PSL, Franz, Zeta, Inter, Common
- tools like GLisp, Flavors, KIEE
Seonomies may be hardest
- high-res graphices terminals cost. about $20K
- Al workstation + high-res color cost $90-1601K



THE ENVIRONMENT IS COMPLICATED

ZETA
LISP

LMI
LAMDBDA+

DEVELOPMENT
ENVIRONMENT

EUNICE

VAX/VMS

PRODUCTION
ENVIRONMENT

PSL

CRAY

TEKTRONIX
41xx




GRAPHICS TERMINALS AND
Al WORKSTATIONS
FACILITATE DEVELOPMENT OF THE SYSTEMS

Graphics terminals give us the same interface to
design codes
- same keyboard-display interaction
- explore ways to recover and display simulation
results

Al workstations have the best development environ-

ment

- full Lisp environment: syntax-directed editor,
debugger, windows

- KEE and other commercial products

- explore coupling between symbolic and numeric
computation

- small machines can bring the apprentice to the
designer



THE APFRENTICE SHOULD MAKE
THE DESIGNER’S JOB EASIER

Turn descriptions into a design

Recall related design problems and refine the design

Call on standard production codes

Assist with parameter studies and interpret computa-
tional results

Incorporate special tools

Apply the power of the computer to the symbol-
manipulation work that designers do



STUDY HOW WEAPONS ARE DESIGNED

- Identify the structure of the design process
- Define needed catalogs of design information
- database of shots
- nominal designs and their performances
- characteristics of and relations between subsys-
tems
- Uncover interplay between 1-D and 2-D simulations
- Pick class of weapons to try
- Outline design steps for the weapon



SUBCRITICAL COMPRESSED

SUPERCRITICAL
MASS

IMPLOSION

CHEMICAL
EXPLOSIVE

( IMMEDIATELY AFTER FIRING)
{ BEFORE FIRING) THEN EXPLODES

Figure 1.53. Principle of an implosion-type nuclear device.



A SIMPLE WEAPON IS AN EXCELLENT TESTBED
FOR AN EXPERT SYSTEM

Simple enough to be doable

Uncovers problems that will arise with more complex
weapons

Has been worked by an expert



THE APPRENTICE INTERACTS
WITH A DESiIGNER

- select a designr

- refine it

- run the simulation code
- interpret results

TASK | SPEC | EXPERT GRAPHIC
DEFINER WINDOW SYSTEM DESIGN

-

INPUT
USER GENERATOR

Nl

INFORMATION OUTP".IT SIMULATION
CCLLECTOR PARSER CODE




THE APPRENTICE INTERACTS ...

Front end translates a description of a weapon into a
design

Graphics box presents the design to the user, lets him
manipulate it

Expert system helps refine the design

Setup-and-submit mechanism runs design codes

Collector recovers and displays results of design codes



THE APPRENTICE WILL GET SMARTER

Use special design codes to optimize designs
Address more complex weapons

Build a database of existing designs

Do parameter studies and interpret results
Run a sequence of several simulation codes



EXPERT SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives

Procon to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Summary



USING Al TECHNIQUES CAN HELP THE DESIGN
PROCESS

The techniques are being applied to two specific tools

Al suggests a framework for combining numerical and
symbolic computation

The apprentice can capture design decisions, stra-
tegies, and heuristics used now

An expert system controller can reduce the costs asso-
ciated with present production controllers



